Светодиодные светильники для теплиц дешевле газоразрядного оборудования

 Очистительный огонь светодиодных технологий

 www.street-leds.ru — презентация уникального светодиода для уличного освещения

 www.agro-leds.ru - новое поколение светодиодных светильников для теплиц

 SUFB-300 голубой светодиод «Национальное достояние»



Какие лампы лучше для досветки растений в теплицу?
от Alex, 14 Октябрь 2019, 08:14
Подключение светодиодного светильника через датчик движения
от Alex, 01 Октябрь 2019, 00:23
тухнет светодиодная лента
от Alex, 27 Сентябрь 2019, 01:09
электронное табло БЕГУЩАЯ СТРОКА
от Markus, 01 Ноябрь 2018, 20:40




 Приходят CSP светодиоды

1. Введение

Одновременно с совершенствованием технологии производства кремниевых пластин, увеличением надежности чипов и улучшением их теплоотводящих свойств, произошло невероятное уменьшение размеров полупроводниковых приборов. Японский производитель электроники Mitsubishi был первым, кто запустил технологию Chip-Scale Package (CSP) в 1994 году. Сейчас CSP компоненты являются стандартными. Однако до недавнего времени технология CSP не применялась для светодиодов из-за невозможности отвода тепла от столь крошечных устройств. Но увеличение эффективности и устойчивости к высоким температурам (что являлось проблемой для предыдущих поколений светодиодов) изменили ситуацию. И сейчас производители, например Nichia, Lumileds, Samsung и Toshiba, объявили о запуске серийного производства CSP светодиодов.
Рассмотрим, как происходило развитие технологии упаковки (корпусировки) светодиодов, какие возможности проектировщикам предоставляет CSP по созданию новых компактных форм-факторов, непрактичных с использованием светодиодов предыдущего поколения.

2. Развитие технологии упаковки

Закон Мура, который недавно отпраздновал свое 50-летие, гласит, что число транзисторов на чипе заданного размера удваивается каждые 18 месяцев, с улучшением методов изготовления. Однако из этого закона также следует, что каждые 18 месяцев чип с определенным числом транзисторов уменьшается в площади до половины его предыдущего размера. И такая миниатюризация компонентов – благо для проектировщиков, сталкивающихся с ограничениями пространства, наложенными при проектировании. Например, носимых устройств (гаджетов).

Но сокращения размеров в связи с технологическими усовершенствованиями оказались недостаточными, чтобы удовлетворять запросам на бóльшую миниатюризацию. Для дальнейшего сокращения размеров электронных компонентов производители чипов систематически модифицировали упаковку, убирая ее малополезные части. Первым главным достижением в этом направлении стали компоненты для поверхностного монтажа (SMD). SMD обходились без выводов, которые проходили через отверстия в печатной плате, обеспечивая компоненту крепление и электрическое соединение. Монтаж SMD компонентов осуществлялся непосредственно на поверхность печатной платы, путем оплавления паяльной пасты, что обеспечивало механическое и электрическое соединение с одновременным сбережением значительного свободного пространства.

Компоненты SMD
Рис.1. Компоненты SMD обходятся без «выводов-через-отверстие» и установлены непосредственно на печатную плату

Затем, производители чипов пошли дальше, удаляя даже небольшое количество пластмассы из корпуса SMD. Вплоть до того, чтобы компоненты, поставляемые клиенту, были чуть больше, чем голый кремний.
Результаты такой оптимизации могут быть весьма существенными. Так, например, Nordic Semiconductor – производитель микросхем для беспроводных коммуникаций предлагает свои системы на чипе (SoC) в двух исполнениях. SoC в корпусе QFN для поверхностного монтажа занимает на печатной плате площадь 36 мм2, в то время как CSP версия занимает всего 9.6 мм2. Экономия площади – почти 76%.

Однако изготовить CPS версию обычной микросхемы не так просто. Производителям полупроводников потребовалось немало лет для совершенствования производственных процессов, прежде чем начать поставку кремниевых чипов, достаточно надежных для непосредственного монтажа на печатную плату и способных выдерживать нагрузки ежедневного использования.

Хотя (за отдельными исключениями) светодиоды не производятся на кремнии, а чаще всего представляют собой структуры на основе полупроводниковых нитридов (GaN и его твердые растворы), выращенные на подложке из сапфира (Al2O3) или карбида кремния (SiC), они попадают под те же самые производственные процессы, которые привели к уменьшению размеров обычной электроники.

Высокая температура – основной фактор деградации светодиодов. Чем выше температура, тем короче срок службы. Однако за многие годы тестирования был накоплен большой объем данных, и все более очевидно, что каждое новое поколение полупроводниковых приборов становится более надежным, способным к более продолжительному сроку службы. Например, светодиоды, работавшие при очень высокой температуре перехода в 105°C, показывали полезный срок службы, превышающий 36 000 часов.

3. Меньше – значит лучше

Основное преимущество технологии CSP очевидно – она значительно сокращает размер упаковки (корпуса) светодиода (рис.2).

Как уменьшался в размерах светодиод
Рис.2. Эволюция светодиодов в уменьшении размеров до chip-scale package

Но также имеются и другие важные преимущества. Например, эти крошечные приборы твердотельного освещения (SSL) существенно дешевле в производстве, что позволяет клиентам значительно снизить издержки при производстве осветительного оборудования.

CSP светодиоды сформировали новую концепцию минимальной упаковки, представляющую реальный шаг в будущее, даже по сравнению с технологией flip-chip («перевернутый кристалл» – метод непосредственного монтажа кристаллов на печатные платы и другие подложки). Контактные площадки расположены на нижней поверхности CSP светодиода с шагом, совместимым со стандартным оборудованием SMD. Эта особенность покончила с потребностью производителей чипов в добавлении подложек, каких-либо оснований или любых других форм дополнительной упаковки.

Не существует четкого определения для CSP, но промышленность, в общем, считает  что «chip-scale package LED» – любое устройство, равное по размеру или до 20 процентов большее активной области (области светового излучения светодиода).

Устройства такого размера предоставляют инженерам больше гибкости в дизайне. Например, они обеспечивают свободу изменения геометрии излучающей поверхности, уровня светимости светодиодов, позволяют уменьшить размер светильников.

Размеры светодиода TL1WK Toshiba соответствуют стандартной технологии SMD монтажа
Рис.3. Размеры контактных площадок CSP светодиода соответствуют стандартной технологии SMD монтажа

Сборочные производства также заинтересованы в использовании CSP с их контактными площадками со стандартным шагом (как анод, так и катод на основании светодиода), потому что они делают сборочный процесс проще и дешевле. Устройства могут быть установлены непосредственно на печатную плату, используя стандартное «pick-and-place» оборудование и нет никакой нужды в разварке дополнительных проводников, необходимых другим миниатюрным типам упаковки, таким как flip-chip. Кроме того, CSP светодиоды могут быть протестированы с использованием стандартного автоматического оборудования для тестирования (ATE).
Другое важное преимущество CSP – более низкое тепловое сопротивление, чем у обычных светодиодов. Например, SMD светодиод TL2F2 компании Toshiba имеет тепловое сопротивление упаковки 30 К/Вт (от перехода до площадки пайки). Для сравнения, светодиод серии TL1WK этой же компании (рис.4) доступен в формате CSP и имеет тепловое сопротивление 17 К/Вт (от перехода до площадки пайки). Уже анонсированы светодиоды CSP с тепловым сопротивлением ниже 5 К/Вт.

Светодиод TL1WK компании Toshiba
Рис.4. Светодиод TL1WK компании Toshiba обладает низким тепловым сопротивлением


Низкое тепловое сопротивление позволяет CSP светодиодам работать на более высоких токах, чем светодиоды в обычных корпусах, увеличивать яркость, без чрезмерного риска преждевременного отказа из-за перегрева. Из-за своих маленьких размеров CSP светодиоды излучают как точечный источник света, а не как более диффузный источник типа традиционных корпусных светодиодов. Это позволяет использовать в осветительных приборах линзы меньших размеров, снижая тем самым стоимость, а также применять более компактные форм-факторы, которые ранее были непрактичны. Другое, оптическое преимущество CSP вытекает из эмиссии света со всех пяти сторон чипа (обычный SMD корпус светодиода излучает лишь с верхней стороны), что повышает световой поток при заданном токе.

Запрос на повышение «плотности люмен», который частично диктовался потребностью в сокращении количества светодиодов для заданной светоотдачи (выхода света), в свою очередь урезающей материалы и затраты на сборку - вероятно будет катализатором вытеснения традиционных светодиодов технологией CSP. При этом эффект может оказаться значительным. Например, типичный светодиод мог бы иметь светоотдачу 120 лм от области светового излучения 12.25 мм2 при плотности люмен (светимости) 9.8 лм/мм2. Для сравнения, светодиод CSP мог бы обеспечить светоотдачу 30 лм от области светового излучения 1 мм2, обеспечивая светимость 30 лм/мм2 – втрое больше, чем от обычного светодиода.

Улучшенная светимость приводит к более компактным световым «движкам», включающим меньшее количество светодиодов в излучающей матрице. Что будет востребовано для производства стандартных, готовых к применению Chip-on-Board (CoB) модулей, которые упрощают дизайн новых продуктов освещения для инженеров, даже не являющихся специалистами в светотехнике.

4. Светодиоды CSP в продаже

Ведущие производители светодиодных чипов проявляют активность в сегменте CSP решений. Так, например, компания Samsung Electronics представила свое второе поколение светодиодов CSP в середине 2015 года. Приборы изготовлены по методу flip-chip с использованием синего эмиттера и люминофора (для получения белого света), нанесенного непосредственно на каждую грань кристалла, за исключением нижней поверхности.
По утверждению производителя, данные светодиоды дают 10-процентное улучшение эффективности и светового потока относительно предыдущего поколения. Компания предлагает как одночиповые светодиоды (рис. 5), так и CSP матрицы 2х2 или 3х3 светодиода. Матрицы имеют достаточно небольшие размеры, что позволяет использовать единственную линзу, в то время как светодиоды в обычных корпусах потребовали бы множество отдельных линз.

CSP светодиод компании Samsung LM101A
Рис.5. CSP светодиод компании Samsung LM101A имеет площадь 1.4 мм2

Lumileds также выпускает собственные CSP светодиоды с размерами чипа 1х1 мм (LUXEON FlipChip White 05) и 1.4x1.4 мм (LUXEON FlipChip White 10). Последний обладает тепловым сопротивлением 2 К/Вт и обеспечивает эффективность до 141 лм/Вт (при 350 мА).

Nichia объявила весной 2015 года о коммерческом запуске Elemental LEDs (ELEDS) – flip-chip светодиодов, имеющих размер 1/9 от аналогичных по свойствам приборов предыдущего поколения. CSP светодиоды компании, позднее, получили серийное название Direct Mountable Chip (DMC) и доступны в двух версиях – площадью 1 мм2 (NCSLE17AT 1717) и 2 мм2 (NVSLE21AT 2121). Они являются эффективной по стоимости заменой обычных мощных (1-4 Вт) светодиодов и обладают эффективностью от 120 до 150 лм/Вт.

Toshiba вывела на рынок CSP светодиоды ранее упоминавшейся серии TL1WK. Устройство имеет размеры 0.65х0.65 мм (0.42 мм2) и может работать на 180 мА без опасности перегрева, предоставляя проектировщику определенную свободу действий в пределах рекомендаций компании по тепловому дизайну.

Cree также разрабатывает CSP светодиоды, на сегодняшний день самая маленькая упаковка из коммерчески доступных – 1.6х1.6 мм (2.56 мм2) серий XLamp XQ. Светодиоды основаны на технологии компании SC3, которая использует SiC (silicon-carbide) подложку.

Seoul Semiconductor, Epistar, Lextar и ряд других известных производителей уже имеют в своем портфеле CSP продукты. Причем, Epistar производит не только CSP светодиоды, но и модули на их основе (рис. 6), в диапазоне мощностей 20-40 Вт, предлагающие клиентам недорогую альтернативу модулям COB.

Светодиодные модули CSP
Рис.6. Модули Epistar оснащены CSP светодиодами

5. Доминирующая тенденция

Не видно ни конца, ни края в поисках того, как сделать электронные компоненты меньшими по размеру. Компактные продукты, такие как носимые устройства (гаджеты) требуют все большей миниатюризации.

Светодиоды претерпевали гораздо более медленное сокращение в своих размерах, чем другие электронные компоненты, потому что они были подвержены тепловому разрушению, особенно в миниатюрных корпусах. Но запрос индустрии освещения по минимизации затрат сборки, повышению «плотности люмен», заставил производителей светодиодных чипов преодолеть технические проблемы. Современные чипы стали гораздо надежнее и теперь могут противостоять более высоким температурам, особенно в формате CSP.
Как следствие, эти новые приборы могут работать при более высоких прямых токах, повышая световой поток.

На сегодняшний день CSP светодиоды - не для всех. Они являются слишком хрупкими и слишком мелкими, чтобы быть принятыми любой сборочной компанией. Но преимуществ у этих крошечных «существ» достаточно много, и все основные производители светодиодных чипов работают над коммерческими продуктами для серийного выпуска в ближайшие 6-12 месяцев. Аналитики сообщают что, если в 2013 году CSP светодиоды составляли только 11% от общего количества мощных светодиодов, то их доля в 2020 году приблизится к 40%.
Пока рынок ждет перехода технологии CSP в доминирующую тенденцию светодиодного освещения, компания KTL уже сегодня производит почти все осветительное оборудование с применением светодиодов CSP.

светодиоды KTL BVQI CE

© 2006-2023 bright-leds.ru | cверхъяркие светодиоды. Любое копирование или распространение материалов этого сайта запрещено.